

Journal of Alloys and Compounds 271-273 (1998) 662-665

# The formation of uranium sesquinitride by reactions of U or UH<sub>3</sub> with a $N_2-H_2$ mixture

M. Katsura<sup>\*</sup>, K. Nishimaki, T. Nakagawa, K. Takahashi

Department of Nuclear Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, Japan

### Abstract

The reaction of massive uranium with a mixture of N<sub>2</sub> and H<sub>2</sub> (N<sub>2</sub>/H<sub>2</sub>=1:3), and that of UH<sub>3</sub> with a mixture of N<sub>2</sub> and H<sub>2</sub>, have been carried out at 300°C. It was found that although the reaction of U with  $N_2$  does not proceed at 300°C, the use of a mixture of  $N_2$  and  $H_2$ leads to the formation of uranium sesquinitride at this temperature. Furthermore, NH<sub>3</sub> is formed by the above two reactions at 300°C. © 1998 Elsevier Science S.A.

Keywords: Ammonia; Catalyst; N2-H2 mixture; Uranium sesquinitride

# 1. Introduction

 $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> crystallizes in a Mn<sub>2</sub>O<sub>3</sub> b.c.c. structure and the lattice parameter  $a_0$  decreases continuously as the atomic ratio N/U of  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> is increased [1,2]. The atomic ratio N/U of the nitrides prepared by the reaction of U with N<sub>2</sub> at  $\leq 1$  bar and above 600°C never exceeds 1.70. Many experimental results suggest that the nitrogenrich  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> phase (N/U $\ge$ 1.80), which cannot be obtained by the reaction of U with N<sub>2</sub> under normal pressures, can be prepared by use of a stream of NH<sub>3</sub> at temperatures of  $\geq 600^{\circ}$ C [3–7]. According to Katsura and Serizawa [7], it is possible to prepare  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> with a N/U ratio >1.8 by the reaction of massive U with static NH<sub>3</sub> at 250 and 300°C, temperatures at which  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> will never be formed within ordinary reaction periods by the reaction of U with  $N_2$  at  $10^2$  kPa (1 bar). Rundle et al. [8] reported in 1951 that the reaction of uranium hydride with nitrogen gave a product of approximate composition  $UN_{1.75}$  and that the reaction required for completion 10 to 12 h at 250°C and 1 to 2 h at 350°C. Tagawa [9] also studied the nitrogenation of UH<sub>3</sub> with N<sub>2</sub> using thermogravimetry. The weight gain started at about 160°C and accelerated above 240°C. Fujino and Tagawa [10] prepared UH<sub>3</sub> at 200–250°C and then added N<sub>2</sub> up to 46.7– 53.3 kPa (350-400 Torr). The hydride was readily converted to the uranium nitride with a N/U ratio of about 1.7.

To gain insight into the role of hydrogen in  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> formation, the reaction of a U chip with a mixture of  $N_2$ and  $H_2$  (N<sub>2</sub>/H<sub>2</sub>=1:3) and the reaction of UH<sub>3</sub> with a  $N_2-H_2$  mixture were performed at 300°C.

### 2. Experimental details

\*Corresponding author. Tel.: +81 6 879 7886; fax: +81 6 879 7889; e-mail: katsura@nucl.eng.osaka-u.ac.jp

The experimental apparatus used in this work consisted

These results lead to the recognition that the presence of hydrogen, either in the form of  $H_2$  or  $NH_3$  in the gas phase or in the form of UH<sub>3</sub> in the solid phase, may play an important role in the formation of  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub>. In preparing some metal nitrides, a mixture of N<sub>2</sub> and H<sub>2</sub> is often used, instead of N<sub>2</sub>, as a nitriding agent and in some cases the addition of H<sub>2</sub> into the gas phase is indispensable for nitride formation. However, the role of hydrogen is not yet well understood. Thermodynamics tells us that the ultimate position of the equilibrium in a chemical system does not depend upon the reaction path. By use of a suitable catalyst for NH<sub>3</sub> decomposition, the equilibrium NH<sub>3</sub>  $\rightleftharpoons$  (1/2)N<sub>2</sub>+  $(3/2)H_2$  may be reached from the NH<sub>3</sub> side. This equilibrium must also be reached from a mixture of N<sub>2</sub> and H<sub>2</sub> from a thermodynamic equilibrium point of view. Thus, both NH<sub>3</sub> and gaseous mixtures of N<sub>2</sub> and H<sub>2</sub> may be regarded as being in an unstable state with respect to the above equilibrium. Therefore, it would be expected that mixtures of N<sub>2</sub> and H<sub>2</sub> may have more effective nitriding and hydriding abilities than N<sub>2</sub> alone or H<sub>2</sub> alone due to their thermodynamic instability, as in the case of a stream of NH<sub>3</sub> [11].

<sup>0925-8388/98/\$19.00 © 1998</sup> Elsevier Science S.A. All rights reserved. PII \$0925-8388(98)00182-0

of a resistance furnace, a vacuum system, a gas supply system, a capacitance manometer, and a gas chromatography system. A quartz tube (30 mm in diameter and 750 mm in length) was placed in the cylindrical resistance furnace. This furnace comprised upper and lower halves, which were connected to each other by hinges in such a way that the upper half could be opened for occasional visual observation of the specimen.

In the case of the reaction of a U chip with a N<sub>2</sub>-H<sub>2</sub> mixture, a quartz boat containing about 0.15 g of a bright U chip pretreated as described in a previous paper [7] was placed in the reaction tube and the system was evacuated to  $1.33 \times 10^{-5}$  Pa at room temperature. Nitrogen gas was first admitted into the reaction system up to  $P_{\rm N_2} = 22.7$  kPa and then H<sub>2</sub> gas was introduced to  $P_{\rm H_2} = 68.0$  kPa. The temperature was raised quickly to 300°C. Then, the total pressure,  $P_{\rm total}$ , and the partial pressures of N<sub>2</sub>, H<sub>2</sub>, and NH<sub>3</sub>,  $P_{\rm N_2}$ ,  $P_{\rm H_2}$ , and  $P_{\rm NH_3}$ , were measured as functions of temperature. During the run, visual observations of the sample appearance was made at intervals. The reaction time was 190 h.

For the reaction of UH<sub>3</sub> with a N<sub>2</sub>-H<sub>2</sub> mixture, UH<sub>3</sub> was prepared by the reaction of a U chip with H<sub>2</sub> at 225°C. Hydrogen gas was introduced up to 65.3 kPa into the reaction tube, in the center of which about 0.15 g of UH<sub>3</sub> was placed. Then, N<sub>2</sub> was admitted to  $P_{N_2} = 22.7$  kPa. The following operation and measurements were similar to the case of the reaction of the U chip with the N<sub>2</sub>-H<sub>2</sub> mixture.

The phases were identified from the X-ray diffraction powder patterns of the reaction products at room temperature.

### 3. Results and discussions

In addition to the above two experiments, the reaction between finely pulverized U and N<sub>2</sub> ( $P_{N_2} = 25.0$  kPa) was also examined at 300°C. The nitrogen pressure,  $P_{\rm N_{2}}$ , remained constant over the reaction period (67 h), suggesting that no reaction occurred between U and N2. The time variations of  $P_{\text{total}}$ ,  $P_{\text{N}_2}$ ,  $P_{\text{H}_2}$ , and  $P_{\text{NH}_3}$  for the reaction of the U chip with the  $N_2-H_2$  mixture at 300°C are shown in Fig. 1. (For clarity, the scale of the  $P_{\rm NH_2}$ variation is different, and indicated on the right-hand side.) During the initial hours (about 5 h)  $P_{N_2}$  dropped sharply and  $P_{\rm H_2}$  decreased slowly. Visual observation of the specimen disclosed that the luster of the U chip diminished immediately after the beginning of the run and, at the same time, its surface became blackish. The U chip continued to be pulverized during this initial stage until appreciable change in the sample appearance was no longer observed. The X-ray diffraction pattern of the solid phase after the run revealed only the presence of  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> (see Fig. 2a). This result is remarkable in that nitriding, which does not



Fig. 1. Variation of  $P_{\text{total}}$ ,  $P_{\text{N}_2}$ ,  $P_{\text{H}_2}$ , and  $P_{\text{NH}_3}$  with time during the reaction  $U + (N_2 + 3H_2)$  in a closed system at 300°C.

proceed at all in a  $N_2$  only atmosphere, occurs readily if  $H_2$  is added. It should be emphasized that the uranium specimen in the reaction  $U+(N_2+3H_2)$  was not powder but massive uranium, which is expected to have much less surface area and consequently to be less chemically



Fig. 2. (a) X-ray diffraction pattern of the final product of the reaction of U with  $N_2 + 3H_2$  at 300°C. (b) X-ray diffraction pattern of the final product of the reaction of UH<sub>3</sub> with  $N_2 + 3H_2$  at 300°C.

reactive than powdered uranium. For  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> to be formed by the reaction of U with nitrogen gas, N<sub>2</sub> molecules must be adsorbed and dissociated on the surface of the uranium sample and then the dissociated N atoms must migrate in the bulk phase. But this reaction does not occur at 300°C, probably because N<sub>2</sub> physically adsorbed on a U surface cannot be dissociated. However,  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> is easily formed by the addition of H<sub>2</sub> to N<sub>2</sub>. This suggests that the presence of H<sub>2</sub> results in a rather drastic disruption of the bonding in an adsorbed  $N_2$  molecule. In this work, nitrogen gas was first admitted prior to H<sub>2</sub> introduction. Thus, the surface of the uranium specimen may have been covered by N2 molecules before the H2 gas was introduced. (Physical adsorption is generally attained more rapidly than chemisorption and it is reversible.) Presumably, chemisorbed hydrogen atoms on the uranium might attract strongly adsorbed N<sub>2</sub> molecules so that the disruption of N<sub>2</sub> could result. The thus formed N atoms on the surface might continue to migrate into the U metal and eventually  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> might be formed. It may also be possible that  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> is formed by the reaction of UH<sub>3</sub>, once formed, with  $N_2$ .

Judging from the fact that NH<sub>3</sub> appeared after a rather long time, the reaction of nitrogen-rich  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> with H<sub>2</sub> led to ammonia synthesis. The  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> formed was so rich in nitrogen that the nitrogen activity of the nitride was extremely high. In other words, N atoms dissolved in  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> are in such a thermodynamically unstable state that they can easily combine with hydrogen atoms chemisorbed on the surface of these nitrides to form NH<sub>3</sub>.

The variations of  $P_{\text{total}}$ ,  $P_{\text{N}_2}$ ,  $P_{\text{H}_2}$ , and  $P_{\text{NH}_3}$  are shown in Fig. 3. The overall feature is almost the same as that of the reaction of the U chip with the N<sub>2</sub>-H<sub>2</sub> mixture, except that  $P_{\text{H}_2}$  first increased and then dropped at the initial stage of the run. The reaction product was  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub>, as shown in Fig. 2b. Consequently, the initial increase in  $P_{\text{H}_2}$  and decrease in  $P_{\text{N}_2}$  may result from the formation of  $\alpha$ -



Fig. 3. Variation of  $P_{\text{total}}$ ,  $P_{\text{N}_2}$ ,  $P_{\text{H}_2}$ , and  $P_{\text{NH}_3}$  with time during the reaction UH<sub>3</sub> + (N<sub>2</sub> + 3H<sub>2</sub>) in a closed system at 300°C.

 $U_2N_{3+x}$  by the reaction  $2UH_3 + (3+x/2)N_2 = U_2N_{3+x} +$  $3H_2$ . For  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> to be formed in the present situation, the N≡N bond must be broken. Presumably this may occur by interaction of adsorbed  $N_2$  on the surface of UH<sub>3</sub> with hydrogen atoms in this hydride, since the disruption of  $N_2$ can never be expected to occur in the gas phase. The resulting N atoms might continue to migrate in the bulk UH<sub>3</sub> phase by ejecting H as H<sub>2</sub> and eventually  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> is formed. Tagawa [9] reacted UH<sub>3</sub> with N<sub>2</sub> at 9.87, 19.7 and 39.5 kPa (75, 150 and 300 Torr) in the absence of  $H_2$ and found that the reaction began at about 160°C and accelerated above 240°C. In this case, H<sub>2</sub> must have accumulated in the gas phase since the system pressure was much lower than the equilibrium hydrogen pressure over UH<sub>3</sub>. Therefore, the presence of hydrogen must always be taken into account even when no H<sub>2</sub> is present initially. The present results and those of Tagawa suggest that the presence of hydrogen is a prerequisite for the formation of  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> since the U+N<sub>2</sub> reaction at 300°C never leads to the formation of  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub>. As for the reaction  $U+(3H_2+N_2)$ , NH<sub>3</sub> is formed after 20 h in the case of the UH3+N2 reaction. Tagawa did not report the formation of  $NH_3$  [9].

Apart from the reaction mechanisms for the formation of  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub>, a mixture of N<sub>2</sub> and H<sub>2</sub> must be regarded as being thermodynamically unstable with respect to the equilibrium  $(1/2)N_2 + (3/2)H_2 \rightleftharpoons NH_3$ . When N<sub>2</sub> gas only is present in the gas phase at a specified temperature and pressure, no change can be expected and the system is thermodynamically stable. However, if H<sub>2</sub> is added to the system, the situation is quite different in that the gas phase is no longer stable from a thermodynamic point of view because the reaction  $(1/2)N_2 + (3/2)H_2 \rightleftharpoons NH_3$  must proceed to the right. The thermodynamic instability brought about by the addition of H<sub>2</sub> to N<sub>2</sub> will make the nitrogen activity of the phase much higher than that of N<sub>2</sub> alone, which, in turn, leads to the formation of  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub>.

The present experimental results show that the partial pressure of  $NH_3$  in the last stage of the run reaches about 1 kPa, which is about half the equilibrium partial pressure of  $NH_3$  under the present experimental conditions. This indicate that  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> acts as an effective catalyst for  $NH_3$  synthesis.

Although uranium and some uranium compounds are known as good catalysts for  $NH_3$  synthesis, none of them has been used industrially because iron-based catalysts were developed and employed in the Haber–Bosch process. Since the introduction of this process the industrial production of  $NH_3$  has remained basically unchanged.

# 4. Concluding remarks

(1) When metallic uranium is employed as the starting material, the reaction of U with a  $N_2 + H_2$  mixture is the best way to obtain  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub>. This reaction may occur at

low temperatures such as  $300^{\circ}$ C and this gaseous mixture can be handled more easily than NH<sub>3</sub>.

(2) Ammonia has been synthesized by the reaction of U with a  $N_2 + H_2$  mixture at 300°C under normal pressure. Thus, uranium may act as an excellent catalyst for  $NH_3$  synthesis.

(3) The thermodynamic instability of the gaseous mixture of N<sub>2</sub> and H<sub>2</sub> with respect to the equilibrium  $(1/2)N_2 + (3/2)H_2 \rightleftharpoons NH_3$  may play a key role in the formation of  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> by the reaction U+(N<sub>2</sub>+3H<sub>2</sub>).

## References

- [1] H. Tagawa, J. Nucl. Mater. 51 (1974) 78.
- [2] H. Serizawa, K. Fukuda, Y. Ishii, Y. Mori, M. Katsura, J. Nucl. Mater. 208 (1994) 128.

- [3] R. Didchenko, F.P. Gortsema, Inorg. Chem. 2 (1963) 1079.
- [4] W. Trzebiatowski, R. Troc, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 10(86) (1962) 395.
- [5] C.E. Price, I.H. Warren, Inorg. Chem. 4 (1965) 115.
- [6] H.J. Berthold, H.G. Hein, Angew. Chem. 81 (1969) 910.
- [7] M. Katsura, H. Serizawa, J. Alloys Comp. 187 (1992) 389.
- [8] R.E. Rundle, N.C. Baenziger, A.S. Newton, A.H. Daane, T.A. Butler, I.B. Johns, W. Tucker, P. Figard, in: I.S. Katz, E. Rabinowitsch (Eds.), The Chemistry of Uranium, Collected Papers, Report TID 5290, USAEC, 1951, p. 253
- [9] H. Tagawa, Bull. Chem. Soc. Jpn. 46 (1973) 1158.
- [10] T. Fujino, H. Tagawa, J. Phys. Chem. Solids 34 (1973) 1611.
- [11] M. Katsura, J. Alloys Comp. 182 (1992) 225.